Probabilistic Methods for Discrete Nonlinear Schrödinger Equations
نویسندگان
چکیده
منابع مشابه
A discrete Adomian decomposition method for discrete nonlinear Schrödinger equations
We present a new discrete Adomian decomposition method to approximate the theoretical solution of discrete nonlinear Schrödinger equations. The method is examined for plane waves and for single soliton waves in case of continuous, semi– discrete and fully discrete Schrödinger equations. Several illustrative examples and Mathematica program codes are presented.
متن کاملDiscrete artificial boundary conditions for nonlinear Schrödinger equations
In this work we construct and analyze discrete artificial boundary conditions (ABCs) for different finite difference schemes to solve nonlinear Schrödinger equations. These new discrete boundary conditions are motivated by the continuous ABCs recently obtained by the potential strategy of Szeftel. Since these new nonlinear ABCs are based on the discrete ABCs for the linear problem we first revi...
متن کاملSoliton dynamics in linearly coupled discrete nonlinear Schrödinger equations
We study soliton dynamics in a system of two linearly coupled discrete nonlinear Schrödinger equations, which describe the dynamics of a two-component Bose gas, coupled by an electromagnetic field, and confined in a strong optical lattice. When the nonlinear coupling strengths are equal, we use a unitary transformation to remove the linear coupling terms, and show that the existing soliton solu...
متن کاملNature of transitions in augmented discrete nonlinear Schrödinger equations.
We investigate the nature of the transitions between free and self-trapping states occurring in systems described by augmented forms of the discrete nonlinear Schrödinger equation. These arise from an interaction between a moving quasiparticle (such as an electron or an exciton) and lattice vibrations, when the effects of nonlinearities in interaction potential and restoring force are included....
متن کاملDiscrete nonlinear Schrödinger equations with arbitrarily high-order nonlinearities.
A class of discrete nonlinear Schrödinger equations with arbitrarily high-order nonlinearities is introduced. These equations are derived from the same Hamiltonian using different Poisson brackets and include as particular cases the saturable discrete nonlinear Schrödinger equation and the Ablowitz-Ladik equation. As a common property, these equations possess three kinds of exact analytical sta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications on Pure and Applied Mathematics
سال: 2012
ISSN: 0010-3640
DOI: 10.1002/cpa.21388